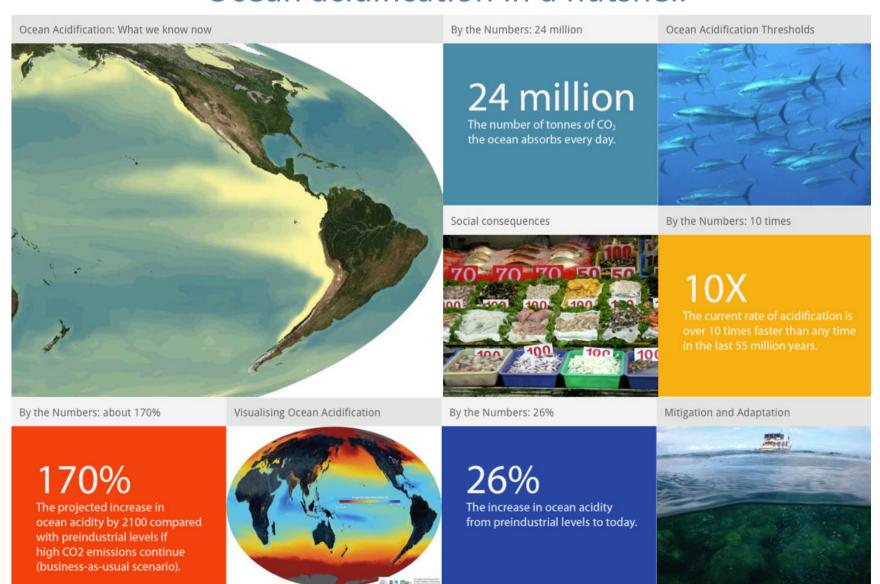
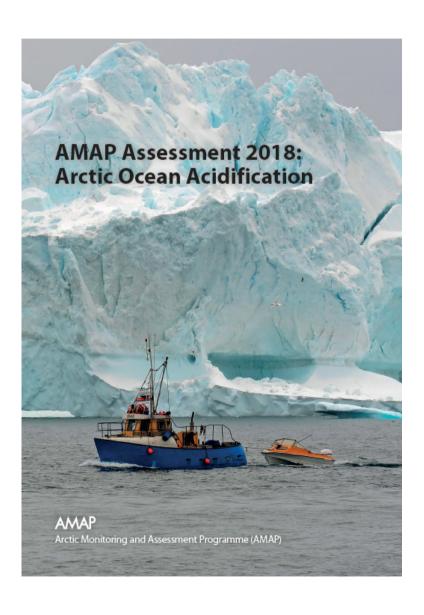
Arctic ocean acidification: Scientific updates on changes to carbonate chemistry

Richard Bellerby

Norwegian Institute for Water Research, Bergen, Norway

East China Normal University, Shanghai, China





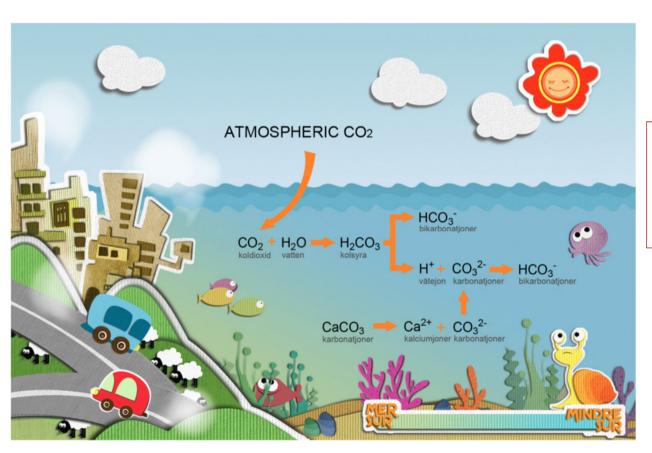
Ocean acidification in a nutshell

AOA 2018 report is published

	m
ontents	
knowledgments	iv
eface	v
Introduction	1
Arctic Ocean acidification: an update	
2.1 Introduction	
2.2 Marine carbonate system and ocean acidification in the regional seas and basins 2.2.1 The Western Eurasian Shelves.	
2.2.2 Alaska, Bering, and Chukchi sectors	
2.2.3 Central Arctic Ocean	
2.2.4 Canada Basin and Beaufort Shelf	
2.2.5 Canadian Polar Shelf, Baffin Bay, Davis Strait and the West Greenland regions.	
2.2.6 Greenland, Iceland and Norwegian seas.	9
2.3 Projections of Arctic ocean acidification	12
2.4 Conclusions and recommendations.	14
Biological responses to ocean acidification	15
3.1 Introduction	
3.2 Responses of key organisms	
3.2.1 Viruses.	
3.2.2 Bacteria and archaea	
3.2.3 Phytoplankton	
3.2.4 Foraminifera	
3.2.5 Macroalgae	
3.2.6 Corals.	
3.2.7 Mollusks	
3.2.8 Echinoderms. 3.2.9 Crustacrens	
3.2.10 Other invertebrates	
3.2.11 Fishes.	
3.2.12 Seabirds and mammals	
3.3 Responses of ecosystems and habitats.	
.4 Acclimation and adaptation	
3.5 Interactive effects in a multi-stressor environment.	26
3.6 Conclusions	27
Appendix: Manipulative experimental studies.	28
Socio-economic impacts of Arctic Ocean acidification on fisheries	43
I.1 Introduction	
1.2 Expected effects of ocean acidification on selected Arctic fisheries	
4.2.1 Norwegian kelp and sea urchins	
4.2.2 Barents Sea cod	
4.2.3 The Greenland shrimp fishery	
4.2.4 Alaska's fishery sector.	
4.2.5 The Western Canadian Arctic	
1.3 Ocean acidification, Arctic fisheries, and other factors	
1.4 Understanding and action under uncertainty.	
I.5 Mitigation and adaptation options I.6 Summary	
Constraints beautides ones and recommendations	
Conclusions, knowledge gaps and recommendations	
i.1 Overview i.2 Knowledge gaps	
3.2 Knowleage gaps. 5.3 Recommendations	
.2 NCCOMMINISTRATIONS	50
ferences	51

Focus on socioecological response; following a request from the Arctic Council

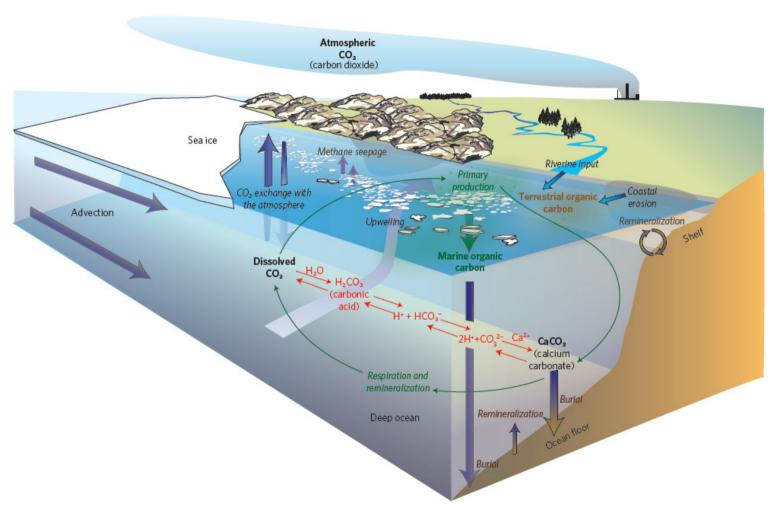
AMAP Assessment 2018: Arctic Ocean Acidification


Annex 1	Export of calcium carbonate under-saturated waters from the Arctic Ocean to the North Atlantic	67
Annex 2	Urchin harvesting and kelp regrowth in northern Norway under ocean acidification and warming	79
Annex 3	Ocean services for the Barents Sea – socio-economic effects of ocean warming and acidification on the Northeast Arctic cod fishery.	91
Annex 4	The Greenland shrimp (Pandalus borealis) fishery	01
Annex 5	Ocean acidification risk assessment for Alaska's fishery sector	29
Annex 6	Changing ocean impacts on the key forage fish species Arctic cod in the Western Canadian Arctic - Linking climate model projections to subsistence fisheries	51

A new basin scale study of ocean acidification has been delivered

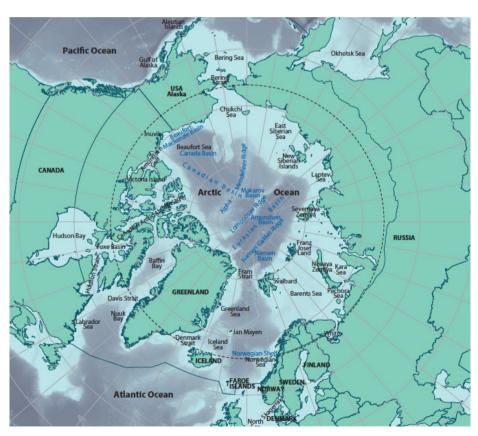
Contents

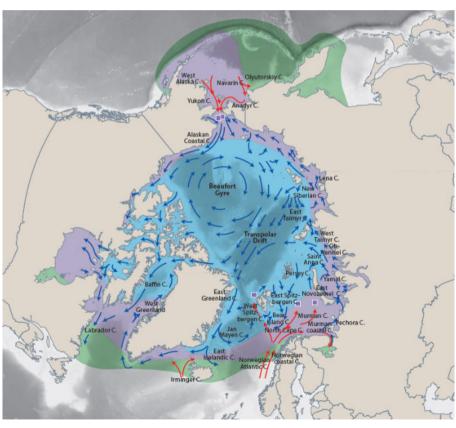
Acknowledgments	iv
Preface	
1. Introduction	1
2. Arctic Ocean acidification: an update	3
2.1 Introduction	
2.2 Marine carbonate system and ocean acidification in the regional seas and basins	5
2.2.1 The Western Eurasian Shelves	5
2.2.2 Alaska, Bering, and Chukchi sectors	7
2.2.3 Central Arctic Ocean	8
2.2.4 Canada Basin and Beaufort Shelf	8
2.2.5 Canadian Polar Shelf, Baffin Bay, Davis Strait and the West Greenland regions	8
2.2.6 Greenland, Iceland and Norwegian seas	
2.3 Projections of Arctic ocean acidification	
2.4 Conclusions and recommendations.	


Ocean Carbon Chemistry and ocean acidification

CaCO₃ saturation

$$\Omega = \frac{[CO_3^{2-}].[Ca^{2+}]}{K'_{sp}}$$

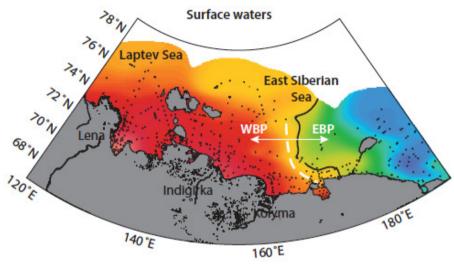

Processes controlling the carbonate system in the Arctic

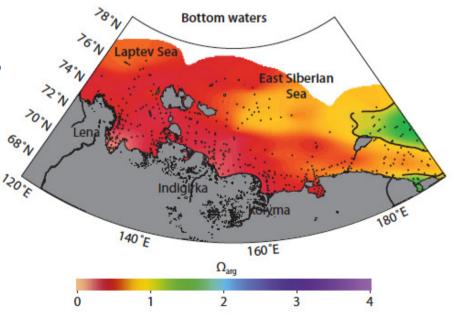


Bellerby 2017. Nature Climate Change

Regional Seas studied In the report

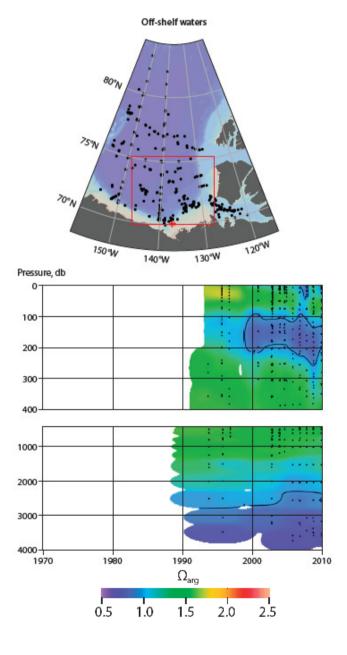
Major currents in, around and out of the Arctic Ocean

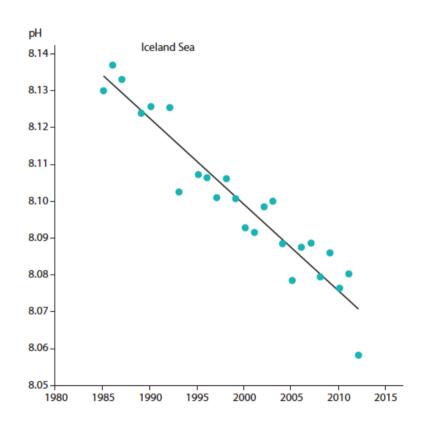



East Siberian Shelf exhibits large gradients of ocean acidification

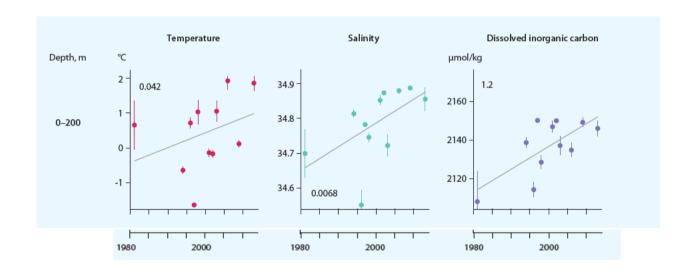
Highly regulated by increasing organic carbon and freshwater

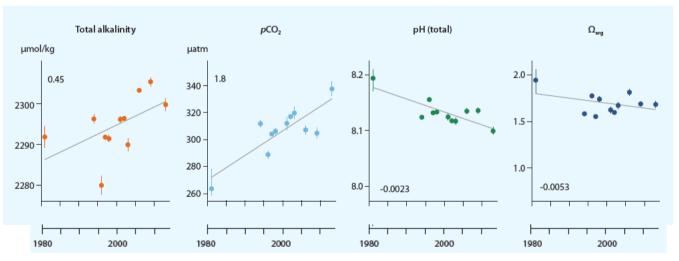
Western biogeochemical province (WBP) has lower pH and omega


Modified from Semilitov et al., 2016

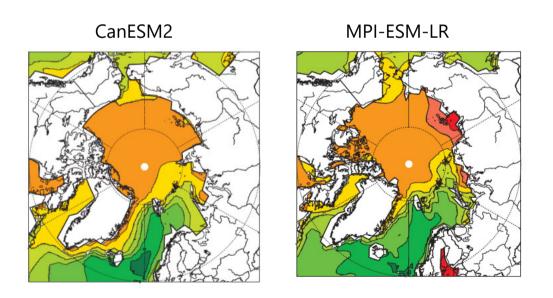

Progressive acidification of the Canadian Basin

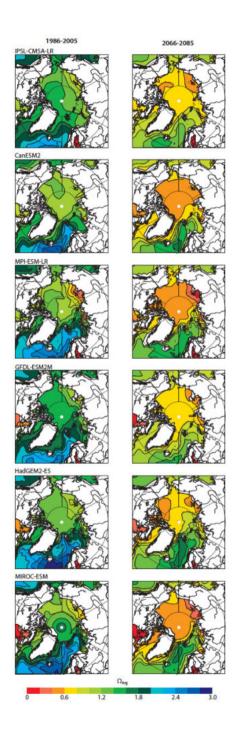
Shallowing of the deep water, and widening of the upper water column, omega saturation horizon


Iceland Sea long term ocean acidification

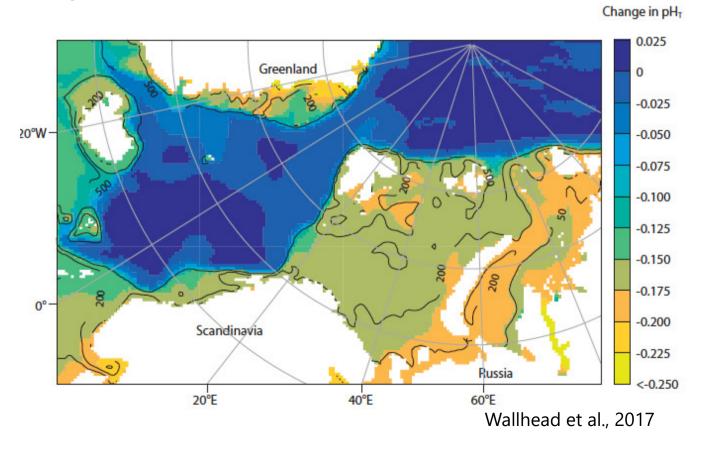

Reduction on seawater pH_T

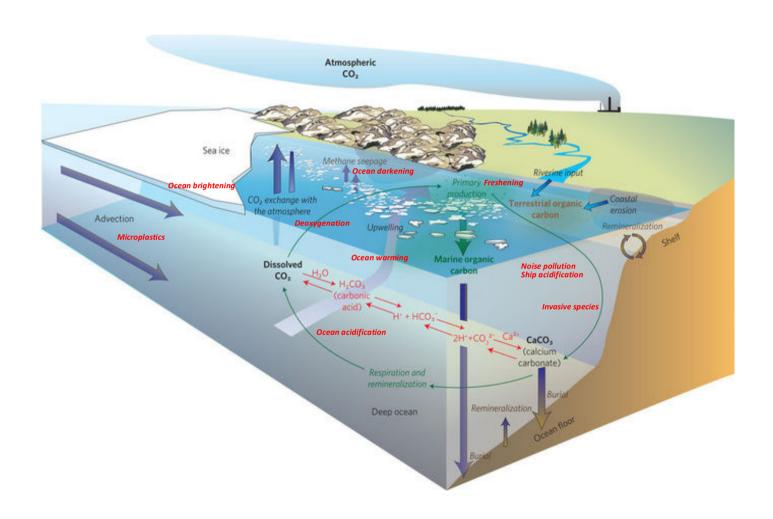
Extended from Olafsson et al., 2009


Large scale system changes in the Greenland Sea



Based on Skjelvan et al., 2014


Earth System model projections of ocean-wide acidification (omega) under the RCP 8.5 scenario



Regional ocean acidification projections with a focus on the Barents and Kara Seas

Reduction in bottom water pH_T between (bi-decadal averages around) 2010 and 2060

The Arctic Ocean ecosystem is coming under increasing pressure from multiple stressors

Adapted from Bellerby 2017. Nature Climate Change

Global Ocean Acidification – Observing Network

- Goal 1: Improve our understanding of global ocean acidification conditions.
 - Determine status of and spatial and temporal patterns in carbon chemistry, assessing the generality of response to ocean acidification;
 - Document and evaluate variation in carbon chemistry to infer mechanisms (including biological mechanisms) driving ocean acidification;
 - Quantify rates of change, trends, and identify areas of heightened vulnerability or resilience.
- Goal 2: Improve our understanding of <u>ecosystem response to</u> ocean acidification.
 - Track biological responses to OA, commensurate with physical and chemical measurements and in synergy with relevant experimental studies and theoretical frameworks;
 - Quantify rates of change and identify areas as well as species of heighted vulnerability or resilience.
- **Goal 3:** Acquire and exchange data and knowledge necessary to **optimize modeling of ocean acidification and its impacts**.
 - Provide spatially and temporally-resolved chemical and biological data to be used in developing models for societally-relevant analyses and projections;
 - Use improved knowledge gained through models to guide Goals 1 and 2 in an iterative fashion.

GOA-ON Executive Council

Co-Chairs

Libby Jewett US NOAA
Bronte Tilbrook Australia CSIRO

Science Members

 Richard Bellerby
 PR China
 East China Normal University and Norway | NIVA

 Fei Chai
 China & US
 SOED, Second Institute of Oceanography, SOA, China & University of Maine, US

 Chen-Tung Arthur Chen
 Taiwan
 National Sun Yet-Sen University

Sam Dupont Sweden University of Gothenberg

Richard Feely US NOAA Helen Findlay UK PML

Somkiat Khokiattiwong Thailand Phuket Marine Biological Center
Jan Newton US University of Washington, IOOS

Benjamin Pfeil Norway University of Bergen
Nayrah Shaltout Egypt National Institute of Oceanography and Fisheries

Christian Vargas Chile Universidad de Concepcion

Program Representational Members

 Albert Fischer
 GOOS, IOC-UNESCO

 Peter Swarzenski
 Monaco
 IAEA/OA-ICC

 Maciej Telszewski
 IOCCP

 Salvatore Arico
 IOC-UNESCO

 Kirsten Isensee
 IOC-UNESCO

Lina Hansson Monaco IAEA/OA-ICC

Secretariat

Meredith Kurz US NOAA
Marine Lebrec Monaco IAEA/OA-ICC
Katherina Schoo IOC-UNESCO

Technical Architects

Cathy Cosca US NOAA

Troy Tanner US University of Washington

A new international working group to compare and contrast ocean services in Chinese and Arctic marginal seas

Co-Chairs: Prof. Richard Bellerby (SKLEC-NIVA, Shanghai/Bergen)
Prof. Su Mei Liu (Ocean University of China, Qingdao)

- Identify key system services, stakeholders, regulatory institutions and process
- Identify recent historical and present variability in marginal seas services
- Couple environmental and ecological change to services
- Develop scenarios of future marginal seas services
- Optimise boundary conditions towards informed co-adaption to coastal change

Conclusions

- Arctic Ocean is witnessing a rapidly changing carbonate system
- Large seasonal and regional variability
- «Traditional» OA is enhanced through changes to the hydrological cycle and land derived carbon
- There is a lack of international coordination of monitoring
- Ocean acidification is not yet studied in tandem with changes in other system stressors